ED 060 622
AUTHOR

TITLE
INSTITUTION
SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 009 628

Bork, Alfred M.

Conversion of PCDP Dialogs.

California Univ., Irvine. Physics Computer
Develorment Project.

National Science Foundation, Washington, D.C.
2 Dec 71

Tpe.

MF-3$0.65 HC-$3.29

*Computer Assisted Instruction; *Computer Programs;
Physics Instruction; Program Descriptions; Programed
Materials; Programing; *Programing Languages;
Programing Problems

PCDP; Physics Computer Develcpment Project

An intxoduction to the probklems involved in

conversion of computer dialogues from one computer language to
another is presented. Conversion of individual dialogues by cocmplete
rewriting is straightforward, if tedious. To make a general
conversion of a large group of heterogeneous dialogue material from
one language to another at one step is more ambitiocus. Three possible
approaches are seen. Original programs might be fed to some kind of
interpretive processor. Or source programs might be read by a
background program in some language, then converted +o prinaries and
load modules for the new language. Finally, an entire editing prcgram
could be written to convert autonomously, but this task might in the
end be too difficult or too ccnstricting to further change. (RB)



Q

ERIC

Aruitoxt provided by Eic:

e et ek Mesea it e ———

———— —

. ED.060622

uU.S. DEPARTMENTV?EFLi:il;lE.TH.
EDUCATION &
EDUCATION
OF P enT HAS BEEN REPRO-
RECEIVED FROM
NIZATION ORIG-

e s s Do TGl )
Conversion of PCLP Dialogs THE PERSON OR ORGANIZATILL (o .
INATING IT. POINTS OF VNscESSARlLY
Lnitateise IONS STATED e :LOSFFICE OF EDU-
Zniversity of California, Irvine REPRESENTOFHC‘ oS
CATION POSITION OR

Dacember 2, 1871

During the past few months we have talked with many pecple abcut the
cossibility of convarting the dialogs daveloped by the Physics
Cemput

ar Davelopment Proiect to other machires. Our dialogs were

oc the .XDS Sigma 7, operating under BTM and UTS, so will
1ot vun directly on any other computer. '
Since we f£iné oSurselves saying the same things to different people,
wo Liought it would be best to puc sone of this material in writing,
t3 sarva as an introduction to-the.problems invclved in attempting
the conversion to a Cdifferent facility. The teaching programs
themselves, and our scfiware, are described in the PCDF progress
report and other literature, available upon raguest.

Todivicdual Diglog Ceonversion .

o

S ‘
4 nuncer of our dizlegs have been converted to other systems on an

individuzl bzeie, by simply working from our existing flowcharts
ang/cr pregresns, in rewriting the material in some other appropriate
langrage. The dialiocy that has besn nost heavily worked this way
the conservation of energy dialog, CONSERVE, which now exists

P
[§]

about six -versions.

o8

Not wvery much In gengral can be said about such single-cdialog con-

an, nsecause the process depenis on the ianguage in which the

i
now program is to be writiten. That language nusi certainly have
faci

pick a siring cut of a larger string. It should also bhe capable
of zltering strings--removing bianks, replacing <haracters, eto.
The flowcharts that are avaiiable for some dialoss, and that hope-

fully will ba available £or others laterx, give some cive a2 to how’

te go alou

such conver

It should
likely to
canr be useq
hecaviliy on]
a formula
depending
should be
generally, §
must »e ma
subscrint
consider ¢
are likeliy
for certai

Genexal C

the prese
full conv

Although
vegin Dy
the XDS ©

100 macro
instructi
s0 pleces

particuiz



u.S. DEPARTMENT OF HEALTH,

EDUCATION & WELFQ)RNE
OFFICE OF EDUCAT oRO-
HAS BEEN RE!

PiN-
OF VIEW OR OPIN
ONS STATED NOT NECEEgSFA:él{;(.
‘REPRESENT OffFICIAL OFTIC(E(

CATION POSITION OR pOLICY.

& with many pecple about the
veloped by the Physics
chines. Our dialogs were

nder BTM and UTS, so will

t peoplz,

n

1 in writing,
2o
.

I
H
"
M.
'
3
-~
<
0
i
P
1
4]

e

The teaching programs
oor
~

bed in the PC progress

pCcn raguest.

ted to other systems on an
our existing flowcharts

a2l in some other appropriate
heavily wofked this way
NSERVE, which now exists

ut such single—~cdialog con--
+%& language in which the

Qage must certainly have
ilities, the ability tc

h

also he capable
eplacing characters, etc.
ome dialogs, and that hope-

s
r, give some clue as to how’

ERIC

Aruitoxt provided by Eic:

to go about <oing this. Our cwn programs are also very useful For
such conversion efforis because the macrses we use &0 not include -
any abbreviztions; thay are resadable with only 3 minimem amouni of

r2ctice on the part of others not initially familiar with ocr

g

procedure.

It should be noted that the main Jirficulty in such conversionz is
likely to come with formulz matching. Ilere the teshriques which
can: be used tend to be lancguage dependent. A program that depends
heaviiy on being able to recognize the kewildering wvariety in which
a formula comes in, as with man:» of our aialecgs, succeeds or fails
depending on how sophisticated the prcgram is inm this regarcd. It
shotld be noted that formulae in our dialogs, as well as in physics
generally, inciude more than algebraic expressions. Provision

must e made for dealing with dzrivatives, malti-variable names,
subscrinted guantities, etc. Formula matching techniguzs whicn
considex only algebrajc entities, Such as numerical substitution,
are likeliy to be inadequate in many places, 2lthough they will work -

for certain dialogs.

General Conversion .

Ccnversion of individual dialogs'is straightforwaerd, althcugh
tedious. Many cf the people we have talked to, bhowever, ars inter-
es:éd in a more ambitious attempt'to convert a laxge gioup of our
dialog material at cne blow, perhaps even most of it. So most of
the present discussion will be oriented toward such full or almost

full convezsion.

Although this material is contained elsewlere in our litercturz; we
veglin by reviewing the structure oL our owa programs as they run on
the XDS éigma 7. The source programs are collections of macxo calls
(Procedures in METASYMBOL, the XDS assembly languagej,  asirng ovar
100 macros that wg have Gevaloped for tne purposes of compuiter bhased

instruction. One possibie itacro is a call to a FORTRAN subroutine,
so plieces of the finzl running gprogram wmay have oricinazed in IORTRAX,

particuiarly if caiculational needs of scrme complaxity are invclved.



Q

_ERIC

Aruitoxt provided by Eic:

PR ek S T

I ot i~ . DS as T 4

Gzcasicnally a program may also have a few direct assexbly language
instractions, kut this is irn general rare and usually represents
sitional stage tefore a new macre has been written to take

care of whatever task is being coverad.

A final program will be compcsed of a large number of source programs
of (primarily) macro calls, perhaps as many as ten or fifteen. Each
cf these goes through the macro assembler (METASYMBOL) and leads

to a binary. Then these binaries are put together by the loader

to form a load mofule. Most of the programs are far too large to
fit irto the user a2rea of ccre (many are more than 100K in length),
so the loed modules are usually elaborate overlay structures; some
are designed to support errlay facilities. Thus

the student calls is a load module. He is not aware

ces are called in from the disk as ne needs them.

q‘ 4]

should stress the reason for the macro approach, since

o
always clear to those unfamiliar with PCDP. We are

y interested in producing scftware. Every piece of

twaze that we have developed has been in response to some teaching
nced. We never abstractly decide what facilities we want, but we
develop teaching materials and then increase the facilities when

nee aaeds chow up in cuch doevelopment. The macro procadurce was
28zapied as being the one in which we could be most responsive to
suach p=lagogical needs. We can easily add macros and expand tne

tv cf older ones, so the software can respond to teaching

[¢]
£
)
]
L
2
'..
).I'

Thirez Fossible Approaches

AL lecast three possibilitlies appear for large~scale conversion of
the 4dizled material. First, it might be possible that our source
ve, perhaps with slight modifications, as input

oy
t0 an interpretive processor. Second, our source programs might
<

FE I

This third ro
of an eciting
themr slightly
tions as to a
syntactical cd
more practice
this editcr w
how its macrojil

In comparing
and the thizdp
in each case

and so would

Because of
compromises v
though most
with the excd
services off
everything t
has sometime
do in other
that lead to)

It would prg
people intirn
sharing monilg

¥e feel thaf
compiier fo




R Y g

ct assenbly language
2sually represents
en written to take

.5er of source programs
ten or fifteen. Each
ASYMBOL) and leads

ther by the loader

re far too large to
than 100K in length),
lay structures; some
facilities. Thus

2. He is not aware
needs them.

ro approach, since

7ith PCDP. We are

2. Every piece of
esponse to some teaching
ties we want, but we

the facilities when
acro proccdurc was

most responsive to

cros and expand tne
respond to teaching

2~scale cocnversion of
=ible that ovr source
difications, as input
ource programs might
in scme language, éaf
nto binaries and load
Third, it mighi ke

ERIC «

Aruitoxt provided by Eic:

possible to implement the entire macre structure”in 2 wacro facilicy

of another computer.

This third possibility would probably also involve tae constructica
of an editing program to accept our source programs, and modify
them sligntly, since everv macro assemblexr has different conven-
tions as t& acceptable form. It would be possible to do such
syntaecticul conversior by hand, but it worid be more elegant and
more practical to nave the computer do this itself. The details of
tnis editcr would be dependent.on the particular machia< used, and
how its racro assembly language- differed from that of the Sigma 7.
In comparing these three possibilities it is c¢lear that the second
and the third would prcduce more efficient ranning code,. siace

in each case the program the students use woulq be a load module
and so would not have the overhead of an interpretive procedure.

Because of the differences of monitors, it Is likely that some
compromises will have to be .ade in the conversion process. Ai-
though most computers are similar in their architectural detaiis,
with the exception of a few machines, they differ in the range of
services offered by thc moritor. We have tried to use in our case
everything that was usefnl in our teaching situations, and this
has sometimes led us £o Go thingslwaich might not be possikle to
do in other systems. Likewise other systems might have features

that lead to possibilities that we could not consider.

It wourld probably be worthwhile in the conversion process to have
people intimately acguainted with both assembly languages and time-
sharing monitors, in order to resolve questions of this kind.

Ve feel that zt this stage of the game an interpretive system., or
coﬁpiler for our cwn languvage, is perhaps unwarranted and tco
straightjacketegd a situaticn. We want to maintain maximun flexi-
bility. We alsc want to be able to do anything that is dosble
witkin the §ystem, s that we do not preclude any parcticular ways

—ab



Q

ERIC

Aruitoxt provided by Eic:

\

PN

computers can be usaed il the teaching eavironment. It may be
ocbvious to you from the literature you have already seen frem the
proiect, but I thounght it was worth stressing here. As our systen

evolves with usage, vours will too, hecpefully.

Fuarthexmecre an interpretive approach is wasteful of computer time,

by at least a factor of four, if the program is to be used with large
nunoers of students. So we do not recommend that approach, al-
thovgh it may be desirable in some situations.

Files

Imprcvement of éomputer—based educational materials is heavily
dependent on selectively saving informaticn on files for later
examination by the author of the program. Experience irn our
project indicates that dialogs, when they are initially written,
are almost always poor. It is-only after 2 long period of use,
and much student feedback, that we can improve them so thzi they

functicn in the way we woulé like them to.

In our systw-= the choice of what is saved is up to the author, with
the use of SAVE or SAVEID commands. These can occur anywhere within
the program. In each case we save identification teclling where it
s within the program {specified by the author), the time and date,

the student's identification (if SAVEID is used), and the last in-

e

wug, including whate er processing on that input haz taken place
since it came in. The metﬁod of storzge of this material should
take into account that it will later be necessary to sort it om
variables, and tc print out various sorted

any of the interesting

rEts.

[

o

this material is essential

a for the develovment of the dialag,
t care must be tzken so that 2s litrtle as possibkle is icst.

Bots
INC

aow

rea
In cur case 1f we attempt to write on a file currently cpen to an-
othexr user, we wait 2 Deriod of time and then proceed (for a finite
numb2r of times) to attempt to write agaiﬁ. . Within the program we
zust examiﬁe the error code returned when a file error occurs; if .

that error indic$

It may happen, t
destroved. Here
immediately so ¢t
can. 1f a resp
write on it, we
because we are

we send a messag
to run a prograsj
we supply. If

operator to cal
can take whatevill
precaution to bd
since this datal

Other kinds of
larly. Restart
is based on a
a core address,B
of all the coury
the program. '
ation which he
in. counters.

with the key hil
which identifi

guery a studen
ticular ID bef
classes such I

One récord kecll
concerns the T
prbgrams them
file error oscq
by inspecting
differen: ect i
also commcﬂ W



It may be
seen frcm the
As our system

. computer time,
A be tsed with lacge

pproach, al-

s is heavily
Jes for later
ce in our
ially written,
beriod ¢f use,
m so thaet they

the author, with
ur anywhere within
telling where it
the time and date,
and the last in-
a3 taken place
raterial should
to sort it on
t various sorted

fent of the dialog,
sikle is lost.
ently cpen to an-
bceed (for a finite
:in the program we
| exrror ocoers; 15

ERIC

Aruitoxt provided by Eic:

that error indicates a file current in use, we behave as indicated.
It may happen, too, that for one rcason or another the f£ile has been
destroved. Here we go to particular pains to let this ke known
immediately so that we lose as little iniormation as we possibly
can. If a response file does not exist when a student tries to
write on it, we £irst try to recreate it. 1If this fails (usually

tecause we are not in the same account in which the file is to exist),

we send a message to the console instrecting the compuier operator
toc run a program which will rocreate the file, a prcgram which

we supply. If this prcgram itself bombs, it asks the computer
operztor to call someone connected with the project, .so that we

can take whatever action is possible. Thus we take more than usual
precaution to be certain that we lose as little data as.possible,
since this data is critical for rewriting the programs.

Other kinds of file activities also occur, and are treatad simi-
larly. Restarting a student within a program he did not complete
is based on a file that stores for each student his sign on number,
a core address, the overlay Segment currently in use, and the value
of all the counters, the things which _determine looping within
the program. Thus we are able to start a student in the same situ-
ation which he left, provided all'continuing information is stcracdé
in. counters. On the Sigma 7 we handla this file as a keyed file,
with the key having a part which identifies the program and a part
which identifies the student. It is, incidentally, necessary to
guery a student as to whether he was the one who put in the rar-
ticular ID before, because experience indicates that with larce

classes such IDs as “BILL" will be common!?

One record keeping activity is coanacted with both ©f theze, an
concerns the presence cf exrors in the system, both within the

prbgrams themselves and in file operations. As indicatcd when 2
f£ile error occurs, we make a carefal check cn the type cf exror,

by inspecting the error coda, and we take as many as 2 ralf dozen
different ectiors depending on this code. Programming errors are
also commcﬁ when the programs ara first released, because they



O

ERIC

Aruitoxt provided by Eic:

YRS e et D

are conpliex programeiny and no amount of initial running will
reveal &1l the errors which may be present. As with any complex

progravming errors may be still present after hundreds of uses

na several revisions.

353

- D
<

Our phiiczorhy for error messages is that we shield the student
2lmostc entirely from such messzges. We ke€p errors messages on

1 files but we do not tell these to the student. In many
cases 2 ctudent is unaware that any error has occurred kecause
ke will simply keep going in the program. If the error is un-
recaverakle, we dump him cuié of the program keeping the error
informration cursélf for later use. Ve believe that rnothirg turns
the student off faster than a compuierese error message that is
not uaderstuniable o him in the context in vhich he has just bean
working. Since we work at the assembly language level, we can
seize control of 211 erxor conditions, by means of our own trap
xJ

-~

Iy

a
insliructions and by using the file errcr procedures provided by

th2 moniter.

Docunentaticn

One cther poiat that should ke kept in mind is that dccumeatation
s esszzntial for a full system, and should be considereé part of

‘
he conversicn prccess. This includes the manuals we now have on

e

43

and, inciuding the supplementary sections. To get large numbers

£ peopd= O werk on teaching materials you must describe the faci-

8]
’y

lities at a variety of different levels. Some cf our present
dccumentation might go with othex implemeﬁtations, but any imple-
mentation is system-dependent and this must be reflected in new

and adequately written documentation. In our case we have employed
an cutside consultant, Chuck Mossman, with special skills in writing
to improve documentation, because we believe that such materials

are very impcrtant. ' ' ' -



